Induced proximity at the cell surface – Nature Biotechnology

May Be Interested In:Pahalgam Terror Attack: Is India Planning Something BIG Against Pakistan? Developments Suggest….


  • Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schreiber, S. L. Molecular glues and bifunctional compounds: therapeutic modalities based on induced proximity. Cell Chem. Biol. 31, 1050–1063 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamazoe, S. et al. Heterobifunctional molecules induce dephosphorylation of kinases—a proof of concept study. J. Med. Chem. 63, 2807–2813 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, P.-H. et al. Modulation of phosphoprotein activity by phosphorylation targeting chimeras (PhosTACs). ACS Chem. Biol. 16, 2808–2815 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. & Ciulli, A. Proximity-based modalities for biology and medicine. ACS Cent. Sci. 9, 1269–1284 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibson, W. J. et al. Bifunctional small molecules that induce nuclear localization and targeted transcriptional regulation. J. Am. Chem. Soc. 145, 26028–26037 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng, C. S. C., Liu, A., Cui, B. & Banik, S. M. Targeted protein relocalization via protein transport coupling. Nature 633, 941–951 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marei, H. et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature 610, 182–189 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wells, J. A. & Kumru, K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat. Rev. Drug Discov. 23, 126–140 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Mullard, A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov. 18, 237–239 (2019).

    Article 

    Google Scholar 

  • Mullard, A. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug Discov. 20, 247–250 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pance, K. et al. Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins. Nat. Biotechnol. 41, 273–281 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 4, 202–213 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caianiello, D. F. et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 17, 947–953 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Y., Teng, P., Montgomery, N. T., Li, X. & Tang, W. Development of triantennary N-acetylgalactosamine conjugates as degraders for extracellular proteins. ACS Cent. Sci. 7, 499–506 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gramespacher, J. A., Cotton, A. D., Burroughs, P. W. W., Seiple, I. B. & Wells, J. A. Roadmap for optimizing and broadening antibody-based PROTACs for degradation of cell surface proteins. ACS Chem. Biol. 17, 1259–1268 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Siepe, D. H., Picton, L. K. & Garcia, K. C. Receptor elimination by E3 ubiquitin ligase recruitment (REULR): a targeted protein degradation toolbox. ACS Synth. Biol. 12, 1081–1093 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lau de, W., Peng, W. C., Gros, P. & Clevers, H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 28, 305–316 (2014).

    Article 

    Google Scholar 

  • Sampathkumar, P. et al. Targeted protein degradation systems to enhance Wnt signaling. eLife 13, RP93908 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, J. et al. Bifunctional compounds as molecular degraders for integrin-facilitated targeted protein degradation. J. Am. Chem. Soc. 144, 21831–21836 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morimoto, M., Till, N. A. & Bertozzi, C. R. Tumor immune cell targeting chimeras (TICTACs) for targeted depletion of macrophage-associated checkpoint receptors. Preprint at bioRxiv https://doi.org/10.1101/2023.12.06.570444 (2023).

  • Dovedi, S. J. et al. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+ activated T cells. Cancer Discov. 11, 1100–1117 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moores, S. L. et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res. 76, 3942–3953 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ludwig, S. D. et al. Multiparatopic antibodies induce targeted downregulation of programmed death-ligand 1. Cell Chem. Biol. 31, 904–919 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, S., Cui, J., Chen, H., Yu, B. & Long, S. Recent progress in degradation of membrane proteins by PROTACs and alternative targeted protein degradation techniques. Eur. J. Med. Chem. 262, 115911 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X., Zhou, Y., Zhao, Y. & Tang, W. Targeted degradation of extracellular secreted and membrane proteins. Trends Pharmacol. Sci. 44, 762–775 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahn, G., Banik, S. M. & Bertozzi, C. R. Degradation from the outside in: targeting extracellular and membrane proteins for degradation through the endolysosomal pathway. Cell Chem. Biol. 28, 1072–1080 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, D. et al. Transferrin receptor targeting chimeras for membrane protein degradation. Nature 638, 787–795 (2025).

  • Sibley, D. R., Benovic, J. L., Caron, M. G. & Lefkowitz, R. J. Phosphorylation of cell surface receptors: a mechanism for regulating signal transduction pathways. Endocr. Rev. 9, 38–56 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Billadeau, D. D. & Leibson, P. J. ITAMs versus ITIMs: striking a balance during cell regulation. J. Clin. Invest. 109, 161–168 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chakraborty, A. K. & Weiss, A. Insights into the initiation of TCR signaling. Nat. Immunol. 15, 798–807 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monroe, J. G. ITAM-mediated tonic signalling through Pre-BCR and BCR complexes. Nat. Rev. Immunol. 6, 283–294 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ben Mkaddem, S., Benhamou, M. & Monteiro, R. C. Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. Front. Immunol. 10, 811 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suber, J. & Iweala, O. I. Strategies for mast cell inhibition in food allergy. Yale J. Biol. Med. 93, 719–731 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomez, G. Current strategies to inhibit high affinity FcεRI-mediated signaling for the treatment of allergic disease. Front. Immunol. 10, 175 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, D., Kepley, C. L., Zhang, M., Zhang, K. & Saxon, A. A novel human immunoglobulin Fcγ–Fcɛ bifunctional fusion protein inhibits FcɛRI-mediated degranulation. Nat. Med. 8, 518–521 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daëron, M. et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc γ RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 3, 635–646 (1995).

    Article 
    PubMed 

    Google Scholar 

  • Turner, H. & Kinet, J.-P. Signalling through the high-affinity IgE receptor FcεRI. Nature 402, 24–30 (1999).

    Article 

    Google Scholar 

  • Tam, S. W., Demissie, S., Thomas, D. & Daëron, M. A bispecific antibody against human IgE and human FcγRII that inhibits antigen-induced histamine release by human mast cells and basophils. Allergy 59, 772–780 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, D. et al. A chimeric human–cat fusion protein blocks cat-induced allergy. Nat. Med. 11, 446–449 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eggel, A. et al. Inhibition of ongoing allergic reactions using a novel anti-IgE DARPin–Fc fusion protein. Allergy 66, 961–968 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zellweger, F. et al. A novel bispecific DARPin targeting FcγRIIB and FcεRI-bound IgE inhibits allergic responses. Allergy 72, 1174–1183 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Veri, M.-C. et al. Therapeutic control of B cell activation via recruitment of Fcγ receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold. Arthritis Rheum. 62, 1933–1943 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karnell, J. L. et al. CD19 and CD32b differentially regulate human B cell responsiveness. J. Immunol. 192, 1480–1490 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, S. Y. et al. Suppression of rheumatoid arthritis B cells by XmAb5871, an anti-CD19 antibody that coengages B cell antigen receptor complex and Fcγ receptor IIb inhibitory receptor. Arthritis Rheumatol. 66, 1153–1164 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perugino, C. A. et al. Evaluation of the safety, efficacy, and mechanism of action of obexelimab for the treatment of patients with IgG4-related disease: an open-label, single-arm, single centre, phase 2 pilot trial. Lancet Rheumatol. 5, e442–e450 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paul, S. P., Taylor, L. S., Stansbury, E. K. & McVicar, D. W. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 96, 483–490 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCord, K. A. et al. Dissecting the ability of Siglecs to antagonize Fcγ receptors. ACS Cent. Sci. 10, 315–330 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ikehara, Y., Ikehara, S. K. & Paulson, J. C. Negative regulation of T cell receptor signaling by Siglec-7 (P70/AIRM) and Siglec-9. J. Biol. Chem. 279, 43117–43125 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Enterina, J. R., Jung, J. & Macauley, M. S. Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biomed. J. 42, 218–232 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Movsisyan, L. D. & Macauley, M. S. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org. Biomol. Chem. 18, 5784–5797 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macauley, M. S. et al. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J. Clin. Invest. 123, 3074–3083 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duong, B. H. et al. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J. Exp. Med. 207, 173–187 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Orgel, K. A. et al. Exploiting CD22 on antigen-specific B cells to prevent allergy to the major peanut allergen Ara h 2. J. Allergy Clin. Immunol. 139, 366–369 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Niiro, H. & Clark, E. A. Regulation of B-cell fate by antigen-receptor signals. Nat. Rev. Immunol. 2, 945–956 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Islam, M. et al. Suppressing immune responses using Siglec ligand-decorated anti-receptor antibodies. J. Am. Chem. Soc. 144, 9302–9311 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duan, S. et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J. Clin. Invest. 129, 1387–1401 (2021).

    Article 

    Google Scholar 

  • Duan, S. et al. Nanoparticles displaying allergen and Siglec-8 ligands suppress IgE–FcεRI-mediated anaphylaxis and desensitize mast cells to subsequent antigen challenge. J. Immunol. 206, 2290–2300 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fernandes, R. A. et al. Immune receptor inhibition through enforced phosphatase recruitment. Nature 586, 779–784 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patsoukis, N., Wang, Q., Strauss, L. & Boussiotis, V. A. Revisiting the PD-1 pathway. Sci. Adv. 6, eabd2712 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ren, J. et al. Induced CD45 proximity potentiates natural killer cell receptor antagonism. ACS Synth. Biol. 11, 3426–3439 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finney, H. M., Rapecki, S. E., Wright, M. J. & Tyson, K. L. Molecules with specificity for CD45 and CD79. US patent US10774152B2 (2020).

  • Wu, S. et al. Aptamer-based enforced phosphatase-recruiting chimeras inhibit receptor tyrosine kinase signal transduction. J. Am. Chem. Soc. 146, 22445–22454 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmid, E. M. et al. Size-dependent protein segregation at membrane interfaces. Nat. Phys. 12, 704–711 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waldmann, T. A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 10, a028472 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saxton, R. A., Glassman, C. R. & Garcia, K. C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. 22, 21–37 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 7, 3 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goetz, R. & Mohammadi, M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol. 14, 166–180 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lai, Y. & Dong, C. Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases. Int. Immunol. 28, 181–188 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, G. W. et al. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Arch. Pharm. Res. 38, 575–584 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hernandez, R., Põder, J., LaPorte, K. M. & Malek, T. R. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 22, 614–628 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Junttila, I. S. et al. Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nat. Chem. Biol. 8, 990–998 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, K. E. et al. A bispecific antibody agonist of the IL-2 heterodimeric receptor preferentially promotes in vivo expansion of CD8 and NK cells. Sci. Rep. 11, 10592 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yen, M. et al. Facile discovery of surrogate cytokine agonists. Cell 185, 1414–1430 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Romei, M. G. et al. i-shaped antibody engineering enables conformational tuning of biotherapeutic receptor agonists. Nat. Commun. 15, 642 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonoda, J., Chen, M. Z. & Baruch, A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm. Mol. Biol. Clin. Investig. 30, 20170002 (2017).

  • Geng, L., Lam, K. S. L. & Xu, A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16, 654–667 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fon Tacer, K. et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 24, 2050–2064 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, Y. et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 5, 181 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Véniant, M. M. et al. Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology 153, 4192–4203 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Smith, R. et al. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/β-klotho bispecific protein. PLoS ONE 8, e61432 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kolumam, G. et al. Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/βklotho complex. eBioMedicine 2, 730–743 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ming, A. Y. K. et al. Dynamics and distribution of klothoβ (KLB) and fibroblast growth factor receptor-1 (FGFR1) in living cells reveal the fibroblast growth factor-21 (FGF21)-induced receptor complex. J. Biol. Chem. 287, 19997–20006 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, C. et al. Fibroblast growth factor receptor 1/klothoβ agonist BFKB8488A improves lipids and liver health markers in patients with diabetes or NAFLD: a phase 1b randomized trial. Hepatology 78, 847–862 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Gordon, M. D. & Nusse, R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clevers, H., Loh, K. M. & Nusse, R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Post, Y. et al. Design principles and therapeutic applications of novel synthetic WNT signaling agonists. iScience 27, 109938 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Janda, C. Y. et al. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 545, 234–237 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tao, Y. et al. Tailored tetravalent antibodies potently and specifically activate Wnt/Frizzled pathways in cells, organoids and mice. eLife 8, e46134 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, Y. et al. Next-generation surrogate Wnts support organoid growth and deconvolute Frizzled pleiotropy in vivo. Cell Stem Cell 27, 840–851 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, H. et al. Development of potent, selective surrogate WNT molecules and their application in defining Frizzled requirements. Cell Chem. Biol. 27, 598–609 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rankovic, Z., Brust, T. F. & Bohn, L. M. Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg. Med. Chem. Lett. 26, 241–250 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sachdev, S., Creemer, B. A., Gardella, T. J. & Cheloha, R. W. Highly biased agonism for GPCR ligands via nanobody tethering. Nat. Commun. 15, 4687 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheloha, R. W., Gellman, S. H., Vilardaga, J.-P. & Gardella, T. J. PTH receptor-1 signalling—mechanistic insights and therapeutic prospects. Nat. Rev. Endocrinol. 11, 712–724 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goebeler, M.-E. & Bargou, R. C. T cell-engaging therapies — BiTEs and beyond. Nat. Rev. Clin. Oncol. 17, 418–434 (2020).

    Article 
    PubMed 

    Google Scholar 

  • You, G. et al. Bispecific antibodies: a smart arsenal for cancer immunotherapies. Vaccines 9, 724 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, S. et al. Gnawing between cells and cells in the immune system: friend or foe? A review of trogocytosis. Front. Immunol. 13, 791006 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, K.-J. et al. Trogocytosis between non-immune cells for cell clearance, and among immune-related cells for modulating immune responses and autoimmunity. Int. J. Mol. Sci. 22, 2236 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joly, E. & Hudrisier, D. What is trogocytosis and what is its purpose? Nat. Immunol. 4, 815 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Till, N., Ramanathan, M., Loh, K. Y. & Bertozzi, C. Trogocytosis targeting chimeras (TrogoTACs) for targeted protein transfer. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2024-k7kn2-v2 (2024).

  • share Share facebook pinterest whatsapp x print

    Similar Content

    Dan Edgar's Dancing On Ice partner Vanessa James suffered a nasty fall during Musicals Week on Sunday night
    Dan Edgar’s Dancing On Ice partner Vanessa James suffers nasty fall during Musicals Week
    President Donald Trump recently admitted to not understanding reporters because of their heavy accents, but he is among many Americans with the struggle
    Why Americans suck at understanding foreign accents, according to experts
    The Second GOP Debate Could Be Smaller, With Or Without Trump
    The Second GOP Debate Could Be Smaller, With Or Without Trump
    Senate Democratic Leader Chuck Schumer speaks at a news conference at Carillon Nursing and Rehabilitation Center in Huntington, N.Y., March 31, 2025. (AP Photo/Mike Balsamo)
    Chuck Schumer says he’s taking the fight over federal spending to Trump country
    Delhi bans old cars from refuelling to help tackle city's pollution
    Delhi bans old cars from refuelling to help tackle city’s pollution
    NASA Associate Administrator Jim Free to Retire After 30 Years Service - NASA
    NASA Associate Administrator Jim Free to Retire After 30 Years Service – NASA

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    What’s Hot: Breaking Stories and Big Events | © 2025 | Daily News